
ASP.NET Concepts (Version 1.1)

Also see

- ADO.NET Concepts

- How to Create Resources?

- Web Services

Machine.config – A configuration file that acts as the base configuration for all
the web sites and applications that are on the server

Assembly Cache – Stores assemblies that are to be used by several
applications (web and windows).

COM – Component Object Model

<% code render block %> - Classic code render blocks are supported by
ASP.NET. The code between <% and %> is actually compiled and not
interrupted.

Uplevel & downlevel processing – For uplevel processing the ASP.NET server
sends DHTML code with HTML version greater than HTML 3.2. This does not
require postback to the server on every user events. However, for downlevel
processing HTML 3.2 code is produced and requires round trips back to the
server for dynamic actions.

ASP.NET directives:

Directive Description

<%@ Page %> Used to define page properties such as language,
code behind classes.

<%@ Import %> Used to import namespaces.

<%@ Register %> Used to register an assembly or control in the Global
Cache.

<%@ OutputCache %> Used to activate output caching on response.

Lifetime of an ASP.NET application:

1. ASP.NET application is created when the first request is send to the
server. Before that no ASP.NET code executes. Now Application
object can be used to store objects with application scope.

2. When the first request is made, a pool of HttpApplication instances is

created and Application_Start event is raised. The HttpApplication
instances process this request and any subsequent requests until the
last instance exits and Application_End event is raised.

Notes:

1. ASP.NET processes request concurrently and thus allows
Application object to be accessed by multiple threads.
When storing objects in application scope, you should
either serialize the object using Lock() and Unlock()
methods or make the object thread safe.

2. The init() and Dispose() of HttpApplication are called

per instance and thus can be used several times between
Application_Start and Application_End. Only these 2
events are shared among all the instances of
HttpApplication in one ASP.NET application.

Global.asax
- Is located at the root of an ASP.NET application‟s virtual directory tree.
- May contain implementations of Application_Start, Application_End,

Session_Start, and Session_End to handle application level logic.
- ASP.NET automatically parses and compiles this file into a .NET

framework class -- that extends HttpApplicaton class-- the first time a
request is made to the server for the application.

- Is configured to automatically reject any direct URL request so that
external users cannot view or download the code within the application
directory.

- List of a few event handlers that can be defined in a Global.asax file:
- Application_Start & Application_End: Only called when the

page is opened first time.
- Session_Start & Session_End: Also only called when the first

request is made.
- Application_BeginRequest & Application_EndRequest:

These methods are called upon each request made to the
application server for a particular application.

- Application_Error

- Static objects, .NET Framework classes, and COM components can
all be defined in Global.asax file using the <object> tag. The scope for
these objects can be one of the following:

- appinstance: denotes that object in specific to one instance of
HttpApplicaton class and is not shared.

- session: object is available only during a session.
- application: object is available throughout the lifetime of the

application.

Managing Application State:

- Store objects in application scope that are modified infrequently and
their access should be read-only after their initializations since these

objects stored in application scope can accessed by multiple threads
concurrently. For read-only data, this will result in the initialization of
the source only once in Application_Start and used from that point
on.

- Store objects in session scope in Session_Start event handler
(method) using Session object when object is specific to individual
user. Session state features can also be configured in web.config file
using <sessionState> tag. By default ASP.NET stores the session
state in the same process that processes the requests just as ASP
code does. But this mechanism can be changed and session data
can be stored in an external process and even on a different
machine. To do this:

1. Start the asp.net state service (aspnet_state.exe) [default
port: 42424]

2. Set the mode attribute of <sessionState> in web.config to
“StateServer”.

3. Set the stateConnectionString attribute of <sessionState> to
the value of machine running aspnet_state.exe service.

- Use client-side cookies to store session information for each request

by instantiating a HttpCookie object and adding key/value string using
Add() method of this instance. Browsers put a 4KB limit cookie files.

- Use ViewState to manage state information for each individual
controls on a page. The information is stored in StateBag class
instance in key/value pair. The data should be request-specific.

HTTP Handlers & Factories:

- Each incoming request is processed by a class that implements
System.Web.IHttpHandler. You can develop your own classes to
process/filter requests by creating a class that implement
System.Web.IHttpHandler and its ProcessRequest() method and
IsReusable property. Factories assign each request to one handler,
which processes the request. IHTTPHandlerFactory provides the
infrastructure to resolve URL requests to specific IHttpHandler
instances.

- Custom HTTP handlers and factories cab be configured in web.config
file using <httahandlers> tag.

Caching: Used to retain pages and data between HTTP requests and reuse
them without recreating them. The lifetime of cache is equal to the lifetime of an
ASP.NET application, when the application is restarted the cache is recreated.
Three kinds of caching that ASP.NET supports are:

- output:
- Caches a dynamic response generated by a request.
- Good for caching entire pages.

- Enabled by default, but responses are not cached until explicitly
stated to do so. To make responses eligible for caching use
either low-level OutputCache API or high-level
@OutputCache directive. There is an expiration/validation
policy and public cache visibility.

- Pages are not placed in the output cache unless they have a
valid expiration or validation policy and public cache visibility.

- fragment: Caches portions of response generated by a request.

Good for parts of pages or data that is expensive to reconstruct or
recreate.

- data: Caches arbitrary objects programmatically to be used across
requests using a full-featured caching engine. Cache class is used to
add key/value pairs to store objects and their value. For application
that need more sophisticated functionality, ASP.NET cache support:

- Scavenging – Cached objects that are not frequently used can
be removed from the cache when memory becomes scarce.

- Expiration – Allows the programmer to set a lifetime on the
object which can be explicit such as 6:00 PM or relative such 20
minutes from the time of caching. After the expiration time the
object is removed and null is returned unless the object is
reloaded into the cache.

- File and Key dependencies – Used to place a constraint on an
external source or other items in the cache so the cached data
contains the updated information related to the external source
or other item in the cache.

Configuration:

- A machine.config configuration file specifies the configurations for
the entire machine. The web.config configuration file, found in any
directory of an application, can overrides the configuration settings
found in machine.config file. The changes made to web.config file
will apply to any child directories found underneath that virtual
directory.

- The settings in web.config files are parsed and stored in a collection
at runtime for each URL. This collection is cached from that point on
and ASP.NET watches the changes to file and upon any changes
invalidates the cache.

- The presence of a web.config file is completely optional. The
following order is taken the ASP.NET when looking for application
settings.

- Apply settings from machine.config
- Override the settings for the site with

C:\Inetpub\wwwroot\web.config file if one is present.
- Override the setting for the application with

D:\ApplicationDir\web.config if one is present.

- Override the settings for the dir with
D:\ApplicationDir\ApplicationSubDir\web.config file if one is
present.

- Sections of web.config: An xml file that contains sections and

handlers for each section.
- <configuration />

 Root element of each configuration file.
 Contains the following sub-sections:

1. Configuration Section Handlers: .Net frame
work classes that implement
IConfigurationSectionHandler interface.

2. Configuration Section Groups: Optional logical
grouping scheme for similar sections.

3. Configuration Sections: Sections in the file that
specific section handlers must process.

- Example:

// This is my own section handler

class MyConfigurationSectionHandler : IConfigurationSectionHandler {

 //… define code here.

}

<configuration>

 <configSections>

 <sectionGroup name=”my.web”> <!--This is optional -->

 <section name=”mymodule”

 type=”MyConfigurationSectionHandler, System.Web” />

 </sectionGroup>

 </configSections>

<my.web>

 <mymodule>

 <add name="CookielessSession"

 type="System.Web.SessionState.CookielessSessionModule,System.Web"

 />

 <add name="OutputCache"

 type="System.Web.Caching.OutputCacheModule,System.Web"

 />

 <add name="Session"

 type="System.Web.SessionState.SessionStateModule,System.Web"

 />

 <add name="WindowsAuthentication"

 type="System.Web.Security.WindowsAuthenticationModule,System.Web"

 />

 …

 <add name="FileAuthorization"

 type="System.Web.Security.FileAuthorizationModule,System.Web" />

 </mymodule>

</my.web>

</configuration>

- By default configuration settings are applied to the current directory
and all childs beneath it. You can use <location path=MyDir/SubDir
/> tag to configuration settings to specific child paths. This is important
when you want to apply globalization settings to a certain directory
pages as in the following code snippet:

<configuration>

 <location path="EnglishPages">

 <system.web>

 <globalization

 requestEncoding="iso-8859-1"

 responseEncoding="iso-8859-1"

 />

 </system.web>

 </location>

 <location path="EnglishPages/OneJapanesePage.aspx">

 <system.web>

 <globalization

 requestEncoding="Shift-JIS"

 responseEncoding="Shift-JIS"

 />

 </system.web>

 </location>

</configuration>

- Locking Down Configuration Settings: You can lock down a group
of settings by using the allowOverride attribute of <location> tag.
This will prevent any inheriting children from overriding the parent
configuration settings.

- Standard ASP.NET Configuraiton Sections: The table below lists
the default section handlers that are supported by ASP.NET

No. Section Name Description

Section
Group

<system.web>

1 <httpModules>

- Responsible for configuring HTTP modules within
an application.

- Participate in processing of every request into an
application.

- Common uses include security and logging.

2 <httpHandlers>
- Responsible for mapping incoming URLs to

IHTTPHandler classes.
- Subdirectories do not inherit these settings

3 <sessionState>
- Responsible for configuring the session state

HTTP module.

4 <globalization> - Responsible for configuring the globalization

- Retrieving Configuration Settings: Use

System.Configuration.ConfigurationSettings class to retrieve the
configurations settings stored in the config file.

Application Deployment:

settings of an application.

5 <compilation>
- Responsible for all compilation settings used by

ASP.NET.

6 <trace>
- Responsible for configuring the ASP.NET trace

service.

7 <processModel>
- Responsible for configuring the ASP.NET process

model settings on IIS Web Server systems.

8 <browserCaps>
- Resposible for controlling the settings of the

browser capabilities component.

9 <clientTarget> -

10 <pages> -

11 <customErrors> -

12 <httpRuntime> -

13 <identity> -

14 <authorization> -

15 <authentication> -

16 <machineKey> -

17 <turst> -

18 <securityPolicy> -

19 <webControls> -

20 <webServices> -

21 <deviceFilters> -

22 <mobileControls> -

23 <appSettings>
- May contain application specific information such

as DB Connection strings, file paths, and remote
XML web service URLs.

24 <runtime>

25 <mscorlib>

26 <startup>

27 <system.runtime.remoting>

28 <system.diagnostics>

Section
Group

<system.net>

29 <authenticationModules>

30 <defaultProxy>

31 <connectionManagement>

32 <webRequestModules>

33 <settings>

34 <system.windows.forms>

- Assembly (Portable Executable DLL):
- Classes that are contained in the DLL files.
- Can span over multiple DLL files.
- Can use an assembly on a computer by deploying it into an

assembly cache.
- Assembly cache can be local to an application or global to a

computer. Only code intended to be shared by multiple
applications should be deployed in global system assembly
cache. Code used by only individual applications should be
deployed into local assembly cache.

- An assembly can be deployed into an application‟s local
assembly cache by simply copying over the files using xcopy or
ftp commands to a folder that is marked as „assembly cache
location‟.

- To deploy a COM component you must run Regsvr32.exe from
the local machine.

- The default location for a local assembly cache is \bin under the
root. This directory is also configured denied access to the
remote clients to avoid steeling the cache.

- Example of a simple ASP.NET application folder layout:
 C:\inetpub\wwwroot

 Web.cfg

 Default.aspx

 \bin <= Application assembly cache directory

 MyPages.dll

 MyBizLogic.dll

 \order

 SubmitOrder.aspx

 OrderFailed.aspx

 \img

 HappyFace.gif

- Eache application is launched from a new CLR construct called
AppDomain that enables process host to provide security and
configuration isolation at runtime.

- Once a DLL is loaded, it will stay loaded until the application
referencing it is either tored down or recycled.

- Process Model Configuration: You can override the process
model configuration settings for an application by changing the
settings to <processModel> section of Machine.config in your
application‟s web.config file

- ASP.NET process can be recycled 2 ways, reative and
proactive. Reactive recycling takes place when a process
misbeaves or is unable to serve request. Proactive recycling
takes place periodically even if the process is healthy.

- Process Model Events can be logged using logLevel attribute
of <processModel>. The levels are All, None, Errors.

- The technique where multiple processes are created for multiple
CPUs is called web gardening.

- Error Handling:
 Configuration Errors
 Parser Errors
 Compilation Errors
 Run-time Errors
Errors can also be handled in Page_Errors method for
individual pages and in Application_Error of Global.asax file
for application level errors.

- Security
 Impersanation means that COM objects can execute

code under a different user name.
 <authentication> tab
 Windows-based Authentication:

1. System.Security.Principal.WindowsPrincipal
2. WindowsAuthentication_OnAuthenticate event

of Global.asax
3. System.Security.Principal.IPrincipal

 Form-based Authentication:
1. <authentication><form/></authentication>
2. System.Web.Security.FormsAuthenticationTic

ket
3. FormsAuthentication.Authenticate

 Authorizing Users and Roles
1. POST and GET can be restricred
2. * - all users, ?- anonymous users.

 User Account Impersonate
1. ASP.NET doesn‟t doe impersonation per request

however, it can be configured to do so by setting
the following: <identity impersonate=”true”/>

2. Since ASP.NET does dynamic compilation,
enabling impersonation requires that read/write
access is allowed on application’s CodeGen
directory and on %Windir%\assembly, global
cache.

 Security & Web Services:

- Inernationalization
 Default encoding is Unicode
 ResponseEncoding attribute to set other encodings
 CultureInfo, RegionInfo
 Localization:

1. Copy and translate the page to the target
language. Use the Culture property

2. Use controls to find the the culture settings on the
main page.

 Resource Files
1. ResourceManager
2. Files can be “loose” or part of an assembly.
3. ResourceWriter, Resgen.exe (INPUT:

key==value or and XML file in .resx format,
OUTPUT: .resources files.).

4. To include a .resources file into an assembly, use
the related compiler switch or AL.exe tool.
Assemblies containing only .resrouces files are
called satellite assemblies.

- Tracing

 Page-level Tracing: TraceContext, Trace.Warn(),
Trace.Write()

 Application-level Tracing: <trace> in web.config
 Trace Statistics are stroed in trace.axd file.

- Debugging

 symbol files (.pdb files) – Map the binary code to source
code lines

 <compilation debug=”true”/> in web.config
 When debugging is enabled and a request is sent to the

page, an Aspnet_wp.exe process is created and
application is loaded into the memory.

 .NET Framework debugger, DbgClr.exe
- Performance Tips

 Disable Session State when not in use
 Choose your Session state provider carefully: in-process,

out-process, out-process in SQLServer
 Avoide extensive round trips to the server
 Use server controls sparingly and appropriately
 Avoid Excessive server control in view state
 Use HttpResponse.Write instead of Response.Write

unless where not much contcatenation is required
 Do not rely heavily on exceptions
 Port call-intesive COM components to manage code
 Use SQL Stored Procedures for data access
 Use SQLDataReader for fast-forward read-only data

cursor.
 Cache data and output wherever possible.
 Enable web gardening for multiprocessor computers
 Disable Debug mode.
 Use the Peformance tool to monitor ASP.net application.

